MTH 213 Discrete Mathematics Fall 2017, 1–1

Assignment 7: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. Let $a, b, c, d \in R$, where a < b and c < d. Prove that |[a, b]| = |[c, d]|

-, ID —

Hint construct a bijective function f from $(-\infty, 0]$ onto (a, b], for example let $f(x) = (b - a)e^x + a$. Construct another bijective function L from $(-\infty, 0]$ onto (c, d]. What is L? Convince yourself that f, L are indeed bijective functions (draw them !) now it is clear using some facts (may be some how you can add the missing a and the missing c

QUESTION 2. Let $A = \{x, 6, 9, y, 2\}$. Define "=" on P(A): whenever $a, b \in P(A)$, then a = b iff |a| = |b|. Show that "=" is an equivalence relation and find all equivalence classes.

QUESTION 3. Define "=" on Z: whenever $a, b \in Z$, then a = b iff $a \mid b$ (i.e., a is a factor of b). Show that "=" is not an equivalence relation

QUESTION 4. Let $A = \{2, 3, 4, 8, 9, 15, 17, 22\}$, $B = \{0, 1, 2\}$. Define "=" on A: whenever $a, b \in A$, then a = b iff $|a - b| \in B$. Is "=" an equivalence relation. If yes, explain, then convince me and find all equivalence classes.

QUESTION 5. Define "=" on Q : whenever $a, b \in Q$, then a = b iff $a - b \in Z$. Convince me that "=" is an equivalence relation and describe all equivalence classes (note that a = b iff a = b + x for some $x \in Z$)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

DATE Hanin Alrais Q2. $A = \{x, 6, 9, y, 2\}$ a, b E P(A), a=b iff |a|=|b| show "=" is an eq rel. & find all eq. classes P(A) = [[x], E6], [9], [y], [2], [x, 6], -(x, 6, 9], ..., [x, 6, 9], ..., [x, 6, 9, y], ..., [x, 6, 9, y], 2], [0]].Dymmetric: U a E P(A) la = la thus a=a @ Ref. Assume a=b for some a, b E P(A). Show b=a since a=b we have |a|=|b| thus 16 = 1263 = Ex3 Hence b=a. 3) Transistive. Assume a=b&b=c for some a, b, c ∈ p(A) Show a=c we know pl=1c1 Hence |a| = c Eq: classes. $[[x3] = [[x], \{6], [9], [4]]$ [= [[]

[{x, 63] = {{x, 63, {x, 93, {x, y3, [x, 23, 56,9], 26,23, 26, 43, 29,45 E2,93, [2, y]] [x,6,93] = { {x,6,9}, {x,6,2} 1 3 Q4 A= (2,3,4,8,9,15, 17,72 B= {0,1,2} Del == on A $a, b \in A, a = b$ iff $|a-b| \in B$ 15 = - - an eq rel.? D symmetric: V a EA la-a EB thus a=a 2 Ref. Assume a= b for some QU, b EA show b=a Since a=b, la-b/EB Thus b-a EB Hence b=a 3) Trans. Assume a=b &b=c for some a, b, c E A Show a=c take a=2, b=3, c=4 |a-b|+ |b-c|= /a-c) = | 2 - 3 | + | 3 - 4 | = | 2 - 4 | 2=2 1

eq. classes: [2] = [2, 3, 4]ana -[8] = [8,9] [15] = (15, 17] [22]= 522] QS Del "=" Q (a=b)ff a=b+x for some x E2 Q symm. HaEQ a-a EZ Thus a=a @ Ref. Assume a=b for some a, b EQ, show b=~ a=b, a-bEZ thus bracz Hence b=a 3) Trans. we know a-bEZ - b-c 67 $(a-b)+(b-c)\in 2$ a-cez $\alpha = c$

· classes $\overline{O} = \overline{Z} = [\dots, -3, -2, -1, 0]$ 1, 2, 3, <u><u>|</u> = <u>|</u> + Z [..., -2.5, -1.5]</u> -0.5, 0.5, 1.5. .. T = + 2 2= 3+2 1 = + + 2 $\frac{3}{4} = \frac{3}{4} + 2$ In general, let nEN* n> 5 (because we did until 4 previously) $\frac{\alpha}{n}$ + 2 , gcd(a, n) = 1 and 15ac sif a=n, then you go back to the first class

Q3. Def. "=" on Z $a, b \in Z$, a = b iff a | bShow that "=" is not an eq rel symmetric: + a EZ a a thus a = reflexive assume a=b for some a, b EZ, show b=a since a=b we have ab but is bla? Hence b≠a. . "=" is not an equivalence relation |e| a = 3, b = 6since 36, a = but 613 ... b = a