Assignment 7: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. Let $a, b, c, d \in R$, where $a<b$ and $c<d$. Prove that $|[a, b]|=|[c, d]|$
Hint construct a bijective function from $(-\infty, 0]$ onto $(a, b]$, for example let $f(x)=(b-a) e^{x}+a$. Construct another bijective function \mathbf{L} from $(-\infty, 0]$ onto $(c, d]$. What is \mathbf{L} ? Convince yourself that f, L are indeed bijective functions (draw them !) now it is clear using some facts (may be some how you can add the missing a and the missing c

QUESTION 2. Let $A=\{x, 6,9, y, 2\}$. Define " $=$ " on $P(A)$: whenever $a, b \in P(A)$, then $a=b$ iff $|a|=|b|$.
Show that " $=$ " is an equivalence relation and find all equivalence classes.
QUESTION 3. Define " $=$ " on Z : whenever $a, b \in Z$, then $a=b$ iff $a \mid b$ (i.e., a is a factor of \mathbf{b}). Show that $"=$ " is not an equivalence relation

QUESTION 4. Let $A=\{2,3,4,8,9,15,17,22\}, B=\{0,1,2\}$. Define " $=$ " on A: whenever $a, b \in A$, then $a=b$ iff $|a-b| \in B$. Is " $=$ " an equivalence relation. If yes, explain, then convince me and find all equivalence classes.

QUESTION 5. Define " $=$ " on Q : whenever $a, b \in Q$, then $a=b$ iff $a-b \in Z$. Convince me that " $=$ " is an equivalence relation and describe all equivalence classes (note that $a=b$ iff $a=b+x$ for some $x \in Z$)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Q1. $A=\{x, 6,9, y, 2\}$
$a, b \in P(A), \quad a=b$ iff $|a|=|b|$ show " $=$ " is an eq rel. \& find all eq. classes

$$
\begin{aligned}
& P(A)=\{\{x\},\{6\},\{9\},\{y\},\{2\},\{x, 6\}, \\
& \cdots \ldots,\{x, 6,9\}, \ldots,\{x, 6,9, y\},
\end{aligned}
$$

(1) Symmetric: $\forall a \in P(A)$

$$
|a|=|a| \text { thus } a=a
$$

(2) Ref Assume $a=b$ for some $a, b \in P(A)$. Show $b=a$ since $a=b$ we have $|a|=|b|$ thus $|b|=|a| \quad|\{6\}|=|\{x\}|$

Hence $\quad b=a$
3) Transistive. Assume $a=b$ \& $b=c$ for some $a, b, c \in P(A)$
Show $a=c$
we know $|a|=|b|$
we know $|b|=|c|$
Hence $\quad|a|=|c|$
Eq. Classes.

$$
\begin{aligned}
& {[\{x\}]=\{\{x\},\{6\},\{9\},\{y\},\{2\}\}} \\
& {[\{\varphi]]=\{\{\phi\}\}}
\end{aligned}
$$

$$
\begin{aligned}
& {[\{x, 6\}]=\{\{x, 6\},\{x, 9\},} \\
& \{x, y\},\{x, 2\},\{6,9\} \\
& \{6,2\},\{6, y\},\{9, y\} \\
& \{2,9\},\{2, y\}\} \\
& {[\{x, 6,9\}]=\{\{x, 6,9\},\{x, 6,2\}} \\
& \hline
\end{aligned}
$$

QU $A=\{2,3,4,8,9,15,7,2\}$

$$
B=\{0,1,2\}
$$

D of " " on A $a, b \in A, a=b$ iff $|a-b| \in B$ is " = a_{n} eq rel.?
(1) Symmetric: $\forall a \in A$

$$
|a-a| \in B \text { thus } a=a
$$

(2) Ref. Assume $a=b$ for some $a, b \in A$ show $b=a$

Since $a=b, \quad|a-b| \in B$
thus $|b-a| \in B$
Hence $b=a$
(3) Trans. Assume $a=b \& b=c$ for some $a, b, c \in A$ Show $a=c$
take $a=2, b=3, c=4$

$$
\begin{gathered}
|a-b|+|b-c|=|a-c| \\
=|2-3|+|3-4|=|2-4| \\
2=2
\end{gathered}
$$

eq. Classes:

$$
[2]=\{2,3,4\}
$$

$$
\begin{aligned}
& {[8]=\{8,9\}} \\
& {[15]=\{15,17\}} \\
& {[22]=\{22\}}
\end{aligned}
$$

QS Def " =" Q

$$
a, b \in Q, \quad a=b \text { iff } a-b \in z
$$

$$
(a=b) \text { ff } a=b+x \text { for some } x \in Z
$$

(1) sym. $: \forall a \in Q$

$$
a-a \in z \text { thus } a=a
$$

(2) Ref. Assume $a=b$ for some $a, b \in Q$, show $b=a$

$$
a=b, \quad a-b \in z
$$

thus $b-a \in z$
Hence $\quad b=a$
(3) Trans.
we know $a-b \in z$

$$
\begin{gathered}
(a-b)+(b-c) \in z \\
a-c \in z \\
a=c
\end{gathered}
$$

eq. classes.

$$
\begin{aligned}
& \overline{0}= z=\{\ldots,-3,-2,-1,0, \\
& 1,2,3, \ldots . \ldots \\
& \frac{T}{2}= \frac{1}{2}+z\{\ldots,-2.5,-1.5, \\
&-0.5,0.5,1.5 \ldots\} \\
& \frac{T}{3}=\frac{1}{3}+z \\
& \frac{\overline{2}}{3}=\frac{2}{3}+z \\
& \frac{\overline{1}}{4}=\frac{1}{4}+z \\
& \frac{\overline{3}}{4}=\frac{3}{4}+z
\end{aligned}
$$

In general, let $n \in N^{*}$
$n \geqslant 5$ (because we did
until 4 previously)

$$
\frac{a}{n}+z \quad, \operatorname{gcd}(a, n)=1
$$

and $1 \leqslant a<n$.
\rightarrow if $a=n$, then you go back to the first class.

Q3. Def. " 5 " on z $a, b \in z, \quad a=b$ iff $a \mid b$
Show that " " is not an eq rel
Symmetric: $\forall a \in \mathcal{Z}$
$a \mid a$ thus $a=a$
reflexive assume $a=b$ for some $a, b \in z$, show $b=a$
since $a=b$ we have $a \mid b$ but is b / a ?

Hence $\quad b \neq a$
$\therefore \quad$ " $=$ " is not an equivalence relation.
let $a=3, b=6$ since $3 / 6, a=b$ but $613, \therefore b \neq a$.

